Magnetization dynamics in nanostructures

Voicu Dolocan
IM2NP lab – Magnetism group (service 162), St. Jérôme campus
Email: voicu.dolocan@im2np.fr
@univ-amu.fr

https://www.im2np.fr/fr/voicu-dolocan
Magnetism Group

6 permanent members

- Ferromagnetism
 - Ferromagnetic Resonance
 - SQUID Magnetometry
 - Micromagnetism

- Quantum Magnetism
 - Electron Spin Resonance
 - Magnetic semiconductors
 - Spin Quantum Bit
Ferromagnetic Resonance

Resonant cavity-based approach (fixed frequency: X-band 9GHz)

Electrical approach (Broadband FMR: coplanar waveguide + VNA)

Technique of choice to determine magnetic properties like magnetic anisotropy, magnetic relaxation mechanisms (magnetic damping), orbital moment or spin-orbit torques
Magnetic thin films are extensively studied for interesting applications in magnetic recording or as magnetic electrodes in spintronics: Mn_5Ge_3 single crystals, soft ferromagnet MnCoGe, semi-metal Heusler compound MnCo$_2$Ge.

From FMR spectra the magneto-crystalline anisotropy can be determined, which reflects the symmetry of the crystalline lattice, and has its roots in the spin-orbit coupling and anisotropy of the crystal field.

From the study of the FMR linewidth, the magnetic relaxation processes are investigated and the magnetic relaxation parameters are determined.
High frequency dynamics of magnetic walls in nanowires

- Systematic displacement of magnetic domain walls trapped at artificial constrictions in a ferromagnetic nanowire - at the foundation of emergent and promising technologies for high-density data storage and magnetic logic devices

- Complex non-linear domain wall dynamics under harmonic excitation: magnetic Duffing oscillator → neuromorphic computing